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ABSTRACT 
 
 Stability parameters for the standard gyroscope error model typically are estimated using 
subjective or non-optimal methods which do not provide an objective measure of statistical 
uncertainty. In this paper, we present a set of equations for maximum likelihood estimation of 
stability parameters which, as typical of maximum likelihood estimation procedures, 
automatically provides an uncertainty measure in the form of the estimated Fisher information 
matrix. Since the computational burden associated with the equations is daunting even by the 
standard of today’s computational resources, a sub-optimal algorithm is proposed which 
asymptotically approaches the accuracy of the optimal algorithm and, produces estimates of 
parameter uncertainties as well. 
 
 
INTRODUCTION 
 
 Accurate estimates of gyroscope stability parameters are required to obtain optimal 
performance from attitude filters that combine measurements from absolute attitude sensors 
with the attitude propagated from gyroscope data (ref. 1). Some analytical techniques which 
have been employed to estimate these parameters include Power Spectral Density (PSD) 
estimation (ref. 2 & 3) and Allan Variance (ref. 4). While these graphical techniques, 
particularly the PSD, are well suited for qualitative analysis of gyro data, they remain 
significantly subjective and, there is no readily accessible quantifier of the accuracy of the 
estimates they provide. 
 
 In 1980, Wyman and Sargent of the TRW Space and Electronics Group created the 
AUTOFIT program (ref. 5) in an effort to remove some of the subjectivity from the estimation 
process and create a uniform industry standard by which the competing gyroscopes could be 
judged. AUTOFIT is robust and easy to use and a good standard for assessing gyro 
performance. However, even AUTOFIT is still not optimal and does not provide an estimate of 
uncertainty in the stability parameters it provides. 
 
 This paper documents a new maximum likelihood approach (ref. 6) for estimating gyro 
stability parameters. While the approach is conceptually simple, it requires a vast amount of 
computer operations to implement as a truly optimal algorithm. Hence, we present a 
suboptimal algorithm which asymptotically approaches the accuracy of the optimal algorithm. 
Like all maximum likelihood estimators, these algorithms have the significant advantage that 
they produce estimates of parameter uncertainties in the form of the estimated Fisher 
information matrix. 
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 The maximum likelihood algorithm is still vulnerable to data which does not conform to 
the Standard Gyroscope Error Model (SGEM) or, is tainted by periodic or other disturbances. 
For identifying such disturbances, there is probably no better tool than a Fast Fourier 
Transform (FFT) based PSD. Plotting the computed Allan Variance against that predicted by 
the estimated stability parameters also provides a good sanity check on the final product, as 
well as giving a direct visual indicator of optimal gyro averaging time. Thus, a good program 
for estimating gyro stability parameters is to use all of the available tools, relying upon each in 
its area of strength. 
 
STANDARD GYROSCOPE ERROR MODEL 
 
 The Standard Gyroscope Error Model or SGEM is depicted in Figure 1 below. The final 
output is average gyro rate error over the interval T. The process mk represents measurement 
noise, usually (but not necessarily) dominated by quantization error, modeled as a sequence of 
independent samples with uniform probability density in the interval [ ]2/,2/ QQ− , where Q is 
the quantization interval and 12/Qm =σ . The measurement noise produces an error in 
angular readout hence, this process is often referred to as Angle White Noise (AWN). 
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Figure 1. Standard Gyroscope Error Model 

 
 The first integrator prior to the sampler is driven in part by a wideband noise process  

, modeled as zero mean white noise with Normal density and spectral density of  in 
units of angle squared per unit time. The result is a Wiener process which, upon sampling, 
becomes a random walk in angle. Hence, the parameter 

)(1 tw 2
vσ

vσ  is often informally referred to as 
the Angle Random Walk (ARW) parameter (the standard deviation of the resulting random walk 
in angle is this parameter multiplied by the squareroot of time).  
 
 In similar fashion, the noise process , quantified by the parameter )(2 tw uσ  (in units of 
angle per time3/2), produces a random walk in rate and, this parameter is often referred to as the 
Rate Random Walk (RRW) parameter. The output state of the second integrator is actually the 
dynamically changing gyro bias at the given instant of time. 
 
 The third integrator is usually not modeled in attitude filter mechanizations because its 
effects are usually not observable within any reasonable time span relative to the filter time 
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constants. However, over long test intervals, a ramp error in rate can become clearly 
discernible. 
 
The autocorrelation of the angular error kθ~  is 
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The autocorrelation of kω~  is therefore 
 

( ) ( )( )

( ) )21,21min(
6

2

)21()21(,

21
2

22

,11,2

2

2121

21212121
−−+










−+−−

+−+−+=

−−

Ω

kkT
T

TT

kTrbkTrbkkR

ukk
uv

kkkkkk
m σδ

σσ
δδδ

σ

 (2) 

 
 Another error process which occasionally appears in gyro data is the mysterious flicker 
noise, also called 1/f noise because of the -1 decade per decade slope it produces on a log-log 
plot of the PSD. Such frequency dependent noise can (but does not necessarily) result as 
average behavior of processes governed by partial differential equations (PDE’s). Such PDE’s 
generally can be solved via modal decomposition into an infinite sum of complex exponential 
processes and, such models can sometimes be truncated to provide an acceptable finite 
dimensional model for a given 1/f noise process. However, such modeling is difficult and time 
consuming and does not lend itself to be easily codified into a uniform standard for gyroscope 
error modeling. As such, we will not address flicker noise here and, our best advice is, if you 
see it in your data, advise the gyro manufacturers to try to isolate the cause and get rid of it. 
 
MAXIMUM LIKELIHOOD ESTIMATION OF SGEM PARAMETERS 
 
 A method for achieving maximum likelihood estimation of the stability parameters is as 
follows. First, we would like to separate the estimation of the statistical parameters mσ , vσ , 
and uσ , from the estimation of the random constant ramp-in-rate-parameter r . One way to do 
this is to difference the angle data thrice i.e., let 
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From equation (2), it is not difficult to find that kβ  is a zero mean process with autocorrelation 
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For a set { }Nkk ,1| =β  of random variables, construct the NN ×  Toeplitz matrices 
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and let 33
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values kβ . For the SGEM, we have allowed that the distribution of the measurement error may 
be mostly uniform due to quantization error. However, since each kβ  is the sum of four other 
random variables, under the Central Limit Theorem, it is reasonable to approximate the 
distribution as jointly normal with probability distribution function (PDF) 
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 The method of Maximum Likelihood seeks to find the parameters mσ , vσ , and uσ  which 
maximize equation (6) for a given set of data { }Nkk ,1| =β . Since the log function is 
monotonic, maximizing (6) is the same as minimizing the negative log-likelihood function 
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You also get, as a byproduct, an estimate of the variance of your estimates in the form of the 
Fisher Information Matrix (ref. 6), which is the inverse of the expectation of the Hessian 
matrix (matrix of 2nd derivatives) of the negative log-likelihood function in equation (7). 
 
 Define the vector [ ]325262 /// TTT uvm σσσλ = . The first order condition for a minimum 
is that the gradient of the negative log-likelihood function must be zero. We need the following 
lemmas: 
 
Lemma 1 – derivative of the inverse 
 
The derivative of the inverse of a matrix P  with respect to a scalar parameter γ  is 
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Lemma 2 – derivative of the logarithm of the determinant   
 
The derivative of the logarithm of the determinant of a matrix P  with respect to a scalar 
parameter γ  is 
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 Hence, if g  is the gradient of the negative log-likelihood function, its elements are given 
by 
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The Hessian matrix  has elements given by H
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 The Maximum Likelihood estimate of the elements of λ  can then be found using a Newton 
iteration 
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with the added bonus that  
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i.e., the expected value of the inverse Hessian is the covariance matrix for the estimates. Of 
course, the iteration in equation (13) needs an initial estimate. This can be obtained using the 
other estimation approaches to which we previously alluded. Or, since the short term error is 
generally dominated by the measurement noise term, the mean square of { }Nkk ,1| =β  is 

approximately { } 622 /20 TE mk σβ ≈  and, 1λ  can be initialized from this. The other terms can 
then be initialized to zero. This initialization procedure will probably work most of the time for 
real data. 
 
 One issue that can arise in the iteration defined by equation (12) is that the Hessian matrix 
as defined in equation (11) is not necessarily positive definite. If, at some step, the Hessian is 
not positive definite, the iteration will likely diverge. Therefore, it is generally better to use the 
expected value of the Hessian 
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rather than equation (11) in the iteration. In addition, for the matrix defined by equation (14) to 
be positive definite, it is necessary to constrain the iteration so that the stability parameter 
estimates remain non-negative. 
 

Since 
x

xx
2

εε ±≈±  we have the estimate and error bounds for the SGEM parameters as 
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  This is all fine and good except for computational burdens. Typical data sets from gyro
testing are composed of tens of thousands of data points. But, computing e.g., ( )iPP 1−

iP1−

trace  for 
such large dimensions is problematic. A single 10,000 × 10,000 matrix using at least 8 bytes 
for each element requires 800 megabytes of storage. This amount of storage can be 
significantly cut down by using sparse matrix representations but, the matrix P  is 
generally not sparse and requires full storage capability. Memory usage can be cut down 
through additional processing but, only by significantly increasing the processing load, which 
is already formidable enough for such large matrices. 
 
 We are, thus, led to consider suboptimal schemes for estimating the SGEM parameters. 
One way is to divide the data set up into equal intervals, throwing out the three data points 
between intervals that would create a cross correlation between them. Then, if there are K 
subsequences of M points each, represented by the set of M-element vectors 

k
β , the joint PDF 

is 
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The elements of the gradient of the negative log-likelihood function are 
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and the expected Hessian matrix elements are 
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 The iteration to find a solution proceeds exactly as before in equation (12) using the 
gradient and Hessian of equations (17) and (18). Clearly, equations (16-18) approach equations 
(6,10,14) as NM →  ( ). We shall refer to this algorithm as the SGEMML algorithm. 1→K
 
 Consider an example. Assume that average rate data in rad./sec. is sampled every 1 second 

to produce 8192 samples and , radm
310−=σ sec/10 4 radv

−=σ , 35 sec/10 radu
−=σ  

and . Of course, in the usual circumstance, we do not know these values a 
priori but, knowing them, we can calculate the expected uncertainty in our estimates versus the 
length M of data segments we choose. We do this by computing the expected Hessian matrix in 
equation (18) for the actual parameters and using equation (15) to compute the approximate 
variations in the square roots of the squared parameter estimates. These approximate 1σ error 
bounds are depicted in Figure 2. 
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Figure 2  Example SGEM Parameter Uncertainty 

 
As may be seen, the uncertainty begins to level off for the progressively longer term ARW and 
RRW processes after subsequence length of about M = 200. 
 
 Usually, estimating a rate ramp is really not of interest because it may not be a repeatable 
parameter through power cycles and, since it is the value of a random state, you do not need it 
to implement a Kalman or other type filter. However, attitude filters are often implemented 
without rate ramp states anyway to reduce processing and, it may be of interest to bound the 
level of error which can come about due to this neglect. Estimating the ramp can be done 
optimally without too much of a computational burden using MATLAB’s (ref. 7) sparse matrix 
representations. For this purpose, we use the sequence { }kα  in equation (3) expressed as a 
vector α . The PDF for this N+1 point sequence is 
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 Setting the derivative of the negative log-likelihood function to zero, we find the optimal 
estimate of r to be 
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and, the estimate of uncertainty in this value is 
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This estimate can be computed in MATLAB (ref. 7) using sparse matrix manipulations for R. 
 
SIMULATION 
 
 This section compares the performance of the AUTOFIT algorithm with the SGEMML 
algorithm for a particular set of stability parameters. For Monte Carlo comparison, we 
generated 100 batches of data with 8192 points each and statistics conforming to the SGEM 
with parameters chosen the same as those which produced Figure 2. The schematic diagram in 
Figure 3 shows how to generate data with average rate error output autocorrelation function 
equivalent to that of equation (2) (equal to it with properly defined initial delay states, but this 
has no effect on the performance of the two estimation algorithms). The first three inputs are 
independent discrete time white noise processes with the indicated distribution (N for normal, 
U for uniform) with zero mean and the indicated variance. The fourth input is a deterministic 
bias plus ramp term. 
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Figure 3.  Schematic Diagram of SGEM Data Generator 

 
 The histograms in Figure 4 show that, for this particular combination of stability 
parameters, AUTOFIT and the SGEMML with 200 point subsequences exhibited fairly 
comparable performance for most of the parameters. A noticeable  improvement in 
performance can be seen in the estimation  of the rate random walk parameter where the 
SGEMML estimates have a narrower spread about the true value. 
 
 For all parameters, the predicted 3σ error bounds from the SGEMML look pretty close to 
bounding the actual results from the SGEMML. These bounds were obtained by multiplying 
the 1σ bounds in Figure 2 at M = 200 by three. In this way, we were able to predict a priori the 
performance of the SGEMML algorithm in the Monte Carlo runs. In a real world case where 
we might have one set of gyro data to analyze, the SGEMML automatically computes these 
error bounds, based on the estimated parameters, as part of the estimation process. 
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 Simulations are excellent for confirming theory but, AUTOFIT has also stood the test of 
time in demonstrating robust and reliable estimation of stability parameters from real world 
instruments, some of them significantly affected by environmental disturbances. It remains to 
be seen if the SGEMML will be as robust to real world data, though there is no reason to 
expect it would not be. In any case, it would be wise and recommended to supplement such 
algorithms as these with other tools which give insight into the quality of the underlying 
model. Sargent and Wyman supplemented AUTOFIT with various charts for examining the 
long term behavior of the data averages used in the algorithm. We would recommend a PSD 
analysis of average rate data as being uniquely useful in identifying deviations from the model 
and sources of disturbances (e.g., disturbances at frequencies associated with heating and 
cooling cycles in the laboratory, 60 Hz electrical sources, etc...). 
 
 

SGEMML
Expected
Performance
1.0 × 10-3 ±
2.6 × 10-5 3σ

SGEMML
Expected
Performance
1.0 × 10-4 ±
4.8 × 10-5 3σ

SGEMML
Expected
Performance
1.0 × 10-5 ±
2.9 × 10-6 3σ

SGEMML
Expected
Performance
1.0 × 10-5 ±
3.3 × 10-7 3σ

 
Figure 4.  Comparison of AUTOFIT and SGEMML for a 

Particular Set of Stability Parameters 

 11



 
CONCLUSIONS 
 
 The SGEMML algorithm outlined in this paper is probably the most nearly optimal 
algorithm available for estimating gyroscope stability parameters. A significant advantage of 
the algorithm is that an estimate of the estimation error is automatically provided. 
 
 It may be possible to devise numerical schemes which would make the application of the 
SGEMML algorithm for longer subsequences of data practical. In any case, the ability to 
compute the amount of data and subsequence size needed to reach a prescribed level of 
accuracy is a powerful tool that can be used to plan test conditions to achieve desired results. 
 
 Obtaining really good estimates of gyroscope stability parameters is not easy. Gyroscope 
data collected over a long period of time are often polluted by environmental disturbances and 
total isolation from these disturbances is often difficult or not feasible to achieve. In such a 
case, a good way to mitigate environmental disturbances is to test two identical instruments 
simultaneously so that common disturbances can be subtracted out. Scaling by 2/1  then 
produces a signal which can be considered to be statistically equivalent to a single instrument, 
at least as far as second order statistics are concerned. Bandlimited disturbances can be filtered 
out but, it has to be done in such a way that preserves conformance of the data with the SGEM. 
Other analysis tools such as the PSD can be helpful in identifying corrupted data and 
determining if and how it can be salvaged. 
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